网上有关“小学六年级奥数题(3篇)”话题很是火热,小编也是针对小学六年级奥数题(3篇)寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信
2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启".
3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了)
4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)
1.小学六年级奥数题
1、小明和小英各自在公路上往返于甲、乙两地。设开始时他们分别从两地相向而行,若在距离甲地3千米处他们第一次相遇,第二次相遇的地点在距离乙地2千米处,则甲、乙两地的距离为多少千米?2、一列客车和货车从甲同时同向出发开往乙地,货车速度是80千米/时,经过1小时两车在丙地相遇,两车到达了两端后都立即返回,第二次相遇的地点也在丙地。求客车的速度。
3、甲乙二人以匀速绕圆形跑道相向跑步,出发点在圆直径的两端。如果他们同时出发,并在甲跑完60米时第一次相遇,在乙跑一圈还差80米时两人第二次相遇,求跑道的长度?
4、甲、乙两车分别从AB两地出发,在AB之间不断的往返行驶,已知甲车的速度是每小时15千米,乙车的速度是每小时35千米,并且甲、乙两车第3次与第4次相遇点恰好为100千米,那么AB两地之间的距离是多少千米?
5、甲、乙两车分别从A、B两地同时出发,在A、B两地之间不断往返行驶。甲、乙两车的速度比为3:7,并且甲、乙两车第1996次相遇的地点和1997次相遇的地点恰好相距120千米(这里指面对面的相遇),那么A、B两地之间的距离是多少千米?
2.小学六年级奥数题
1、某列车通过250米长的隧道用25秒,通过210米长的隧道用23秒,若该列车与另一列长150米。时速为72千米的列车相遇,错车而过需要几秒钟?答案与解析:
根据另一个列车每小时走72千米,所以,它的速度为:72000÷3600=20(米/秒),
某列车的速度为:(250-210)÷(25-23)=40÷2=20(米/秒)
某列车的车长为:20×25-250=500-250=250(米),
两列车的错车时间为:(250+150)÷(20+20)=400÷40=10(秒)
2、A、B、C、D四个同学猜测他们之中谁被评为三好学生。A说:“如果我被评上,那么B也被评上。”B说:“如果我被评上,那么C也被评上。”C说:“如果D没评上,那么我也没评上。”实际上他们之中只有一个没被评上,并且A、B、C说的都是正确的。问:谁没被评上三好学生?
答案与解析:A没有评上三好学生。
由C说可推出D必被评上,否则如果D没评上,则C也没评上,与“只有一人没有评上”矛盾。再由A、B所说可知:
假设A被评上,则B被评上,由B被评上,则C被评上。这样四人全被评上,矛盾。因此A没有评上三好学生。
3.小学六年级奥数题
1、甲乙两车同时从AB两地相对开出。甲行驶了全程的5/11,如果甲每小时行驶4.5千米,乙行了5小时。求AB两地相距多少千米?解:AB距离=(4.5×5)/(5/11)=49.5千米
2、一辆客车和一辆货车分别从甲乙两地同时相向开出。货车的速度是客车的五分之四,货车行了全程的四分之一后,再行28千米与客车相遇。甲乙两地相距多少千米?
解:客车和货车的速度之比为5:4那么相遇时的路程比=5:4相遇时货车行全程的4/9此时货车行了全程的1/4距离相遇点还有4/9-1/4=7/36那么全程=28/(7/36)=144千米
3、甲乙两人绕城而行,甲每小时行8千米,乙每小时行6千米。现在两人同时从同一地点相背出发,乙遇到甲后,再行4小时回到原出发点。求乙绕城一周所需要的时间?
解:甲乙速度比=8:6=4:3相遇时乙行了全程的3/7
那么4小时就是行全程的4/7
所以乙行一周用的时间=4/(4/7)=7小时
4、小兔和小猫分别从相距40千米的A、B两地同时相向而行,经过4小时候相聚4千米,再经过多长时间相遇?
解:速度和=(40-4)/4=9千米/小时那么还需要4/9小时相遇
5、甲、乙两车分别从ab两地开出甲车每小时行50千米乙车每小时行40千米甲车比乙车早1小时到两地相距多少?
解:甲车到达终点时,乙车距离终点40×1=40千米甲车比乙车多行40千米
那么甲车到达终点用的时间=40/(50-40)=4小时两地距离=40×5=200千米
精选初中奥数题及答案解析
#小学奥数# 导语解奥数题时,如果能合理的、科学的、巧妙的借助点、线、面、图、表将奥数问题直观形象的展示出来,将抽象的数量关系形象化,可使同学们容易搞清数量关系,沟通“已知”与“未知”的联系,抓住问题的本质,迅速解题。以下是 整理的《小学五年级奥数题及答案解析(五篇)》,希望帮助到您。
小学五年级奥数题及答案解析篇一
油库里有6桶油,分别装着汽油、柴油和机油。油桶上只标明15公升、16公升、18公升、19公升、20公升和31公升,却没有注明是哪一种油。只知道柴油是机油的2倍,汽油只有一桶。请你分析一下,各个油桶里装的是什么油?答案解析
根据“柴油是机油的2倍”这一条件可知,这两种油之和一定是3的倍数。而六桶油的和为15+16+18+19+20+31=119(公升),119除以3得到的余数为2,说明汽油量是3的倍数还多2公升。又知“汽油只有一桶”,在油桶上标明的六个数中,只有20是3的倍数多2的数,所以标明20公升这一桶装的是汽油。从而可求出机油量为(15+16+18+19+31)÷3=33(公升),柴油量为33×2=66(公升)
通过观察可知,标明15公升与18公升的两桶装的是机油,标明16公升、19公升与31公升的三桶装的是柴油。
小学五年级奥数题及答案解析篇二
甲、乙、丙三个桶内各装了一些油,先将甲桶内三分之一的油倒入乙桶,再将乙桶内五分之一的油倒入丙桶,这时三个桶内的油一样多,如果最初丙桶内有油48千克,那么最初甲桶内有油_____千克。乙桶内有油_____千克。答案解析
甲桶里面应该有96千克,乙桶里有48千克。
假设甲桶往乙桶倒过油之后乙桶的油是5份,那么它将五分之一给了丙桶,结果两桶一样多,说明丙桶原来有3份,那么三桶都一样的时候都是4份,可以知道,甲桶倒出去三分之一之后还有4份,那么原来就有6份,甲桶往乙桶倒过2份油之后乙桶的油是5份,说明原来乙桶也是3份,那么丙桶的3份相当于48千克,一份就是16千克,最初的甲桶里面应该有96千克,乙桶里有48千克。
小学五年级奥数题及答案解析篇三
学校参加体操表演的学生人数在60~100之间。把这些同学按人数平均分成8人一组,或平均分成12人一组都正好分完。参加这次表演的同学至少有()人。答案解析
考点:公因数和公倍数应用题。
分析:按人数平均分成8人一组,或平均分成12人一组都正好分完,那么总人数就是8和12的公倍数,再根据总人数在60~100之间进行求解。
解答:
8=2×2×2;
12=3×2×2;
8和12的最小公倍数是:2×2×2×3=24;
那么8和12的公倍数有:24,48,72,96,…
由于总人数在60~100,所以总人数就是72人或者96人,最少是72人。
答:参加这次表演的同学至少有72人。
故答案为:72。
小学五年级奥数题及答案解析篇四
某人去银行取款,第一次取了存款的一半多50元,第二次取了余下的一半少100元,这时他的存折卡上还剩1350元。问:他存折卡上原有多少钱?答案解析
我们可以倒过来推,第二次取了余下一半少100元,可知"余下的一半多100元"是1350,从而"余下的一半"是1350-100=1250(元)
余下的钱是:1250×2=2500(元)
同样的道理,第一次去了余下一半多50元,可知"余下一半少50元"是2500,从而"余下一半"是2500+50=2550(元)
存折卡上原有2550×2=5100(元)
小学五年级奥数题及答案解析篇五
一座长1500米的大桥,一列火车从桥上通过,测得火车从开始上桥到完全离开桥共用150秒,整列火车在桥上的时间为100秒。则火车的速度是_____米/秒,火车长____米。答案解析
火车通过两个桥长的距离,用时(150+100)秒,所以火车的速度为
(1500+1500)÷(150+100)=12(米/秒)
火车长150×12-1500=300(米)
六年级奥数题及答案:工作天数
#初中奥数# 导语奥林匹克数学竞赛或数学奥林匹克竞赛,简称奥数。奥数体现了数学与奥林匹克体育运动精神的共通性:更快、更高、更强。下面是 为大家带来的“精选初中奥数题及答案解析”,欢迎大家阅读。
选择题
1.下面的说法中正确的是()
A.单项式与单项式的和是单项式
B.单项式与单项式的和是多项式
C.多项式与多项式的和是多项式
D.整式与整式的和是整式
答案:D
解析:x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A。两个单项式x2,2x2之和为3x2是单项式,排除B。两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D。
2.如果a,b都代表有理数,并且a+b=0,那么()
A.a,b都是0
B.a,b之一是0
C.a,b互为相反数
D.a,b互为倒数
答案:C
解析:令a=2,b=-2,满足2+(-2)=0,由此a、b互为相反数。
3.下面说法中不正确的是()
A.有最小的自然数
B.没有最小的正有理数
C.没有的负整数
D.没有的非负数
答案:C
解析:的负整数是-1,故C错误。
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么()
A.a,b同号
B.a,b异号
C.a>0
D.b>0
答案:D
5.大于-π并且不是自然数的整数有()
A.2个
B.3个
C.4个
D.无数个
答案:C
解析:在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,
-1,0共4个.选C。
6.有四种说法:
甲.正数的平方不一定大于它本身;
乙.正数的立方不一定大于它本身;
丙.负数的平方不一定大于它本身;
丁.负数的立方不一定大于它本身。
这四种说法中,不正确的说法的个数是()
A.0个
B.1个
C.2个
D.3个
答案:B
解析:负数的平方是正数,所以一定大于它本身,故C错误。
7.a代表有理数,那么,a和-a的大小关系是()
A.a大于-a
B.a小于-a
C.a大于-a或a小于-a
D.a不一定大于-a
答案:D
解析:令a=0,马上可以排除A、B、C,应选D。
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边()
A.乘以同一个数
B.乘以同一个整式
C.加上同一个代数式
D.都加上1
答案:D
解析:对方程同解变形,要求方程两边同乘不等于0的数,所以排除A。我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B。同理应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是()
A.一样多
B.多了
C.少了
D.多少都可能
答案:C
解析:设杯中原有水量为a,依题意可得,
第二天杯中水量为a×(1-10%)=0.9a;
第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;
第三天杯中水量与第一天杯中水量之比为0.99∶1,
所以第三天杯中水量比第一天杯中水量少了,选C。
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将()
A.增多
B.减少
C.不变D.增多、减少都有可能
答案:A
填空题
1.198919902-198919892=______。
答案:198919902-198919892
=(19891990+19891989)×(19891990-19891989)
=(19891990+19891989)×1=39783979。
解析:利用公式a2-b2=(a+b)(a-b)计算。
2.1-2+3-4+5-6+7-8+…+4999-5000=______。
答案:1-2+3-4+5-6+7-8+…+4999-5000
=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)
=-2500。
解析:本题运用了运算当中的结合律。
3.当a=-0.2,b=0.04时,代数式a2-b的值是______。
答案:0
解析:原式==(-0.2)2-0.04=0。把已知条件代入代数式计算即可。
4.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克。
答案:45000(克)
解析:食盐30%的盐水60千克中含盐60×30%(千克),
设蒸发变成含盐为40%的水重x克,
即0.001x千克,此时,60×30%=(0.001x)×40%
解得:x=45000(克)。
遇到这一类问题,我们要找不变量,本题中盐的含量是一个不变量,通过它列出等式进行计算。
解答题
1.甲乙两人每年收入相等,甲每年储蓄全年收入的1/5,乙每月比甲多开支100元,三年后负债600元,求每人每年收入多少?
答案:设每人每年收入X元,甲每年开始4/5X元,依题意有:
3(4/5X+1200)=3X=600
(3-12/5)X=3600-600
解得,x=5000
答:每人每年收入5000元。
2、若S=15+195+1995+19995+···+199···5(44个9),则和数S的末四位数字的和是多少!
答案:S=(20-5)+(200-5)+(2000-5)+···+(200···0-5)(45个0)
=20+200+2000+200···0(45个0)-5*45
=22···20(45个2)-225
=22···21995(42个2)
3.一个人以3千米/小时的速度上坡,以6千米/小时的速度下坡,行程12千米共用了3小时20分钟,试求上坡与下坡的路程。
答案:设上坡路程为x千米,下坡路程为y千米.依题意则:
X+y=12①;x/3+y/6=31/3②
由②有2x+y=20,③
由①有y=12-x,将之代入③得2x+12-x=20。
所以x=8(千米),于是y=4(千米)。
答:上坡路程为8千米,下坡路程为4千米。
4.证明:质数p除以30所得的余数一定不是合数。
证明:设p=30q+r,0≤r
这篇关于《六年级奥数题及答案:工作天数》,是 特地为大家整理的,希望对大家有所帮助!
一件工作,若由甲单独做72天完成,现在甲做1天后,乙加入一起工作,合作2天后,丙也一起工作,三人再一起工作4天,完成全部工作的1/3,又过了8天,完成了全部工作的5/6,若余下的工作由丙单独完成,还需要几天?
答案与解析:
甲乙丙3人8天完成 :5/6-1/3=1/2
甲乙丙3人每天完成 :1/2÷8=1/16
甲乙丙3人4天完成 :1/16×4=1/4
则甲做一天后乙做2天要做 :1/3-1/4=1/12
那么乙一天做 :[1/12-1/72×3]/2=1/48
则丙一天做 :1/16-1/72-1/48=1/36
则余下的由丙做要 :[1-5/6]÷1/36=6天
答案:还需要6天
关于“小学六年级奥数题(3篇)”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!