我来教大家“微信小程序微乐家乡麻将有挂吗”(确实是有挂)-哔哩哔哩

网上有关“小学四年级奥数题:巧妙求和”话题很是火热,小编也是针对小学四年级奥数题:巧妙求和寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
http://www.boyicom.net/sheng/1.jpg
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信 2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启". 3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了) 4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

一、知识要点

 某些问题,可以转化为求若干个数的和,在解决这些问题时,同样要先判断是否求某个等差数列的和。如果是等差数列求和,才可用等差数列求和公式。

 在解决自然数的数字问题时,应根据题目的具体特点,有时可考虑将题中的数适当分组,并将每组中的数合理配对,使问题得以顺利解决。

 二、精讲精练

 例题1 刘俊读一本长篇小说,他第一天读30页,从第二天起,他每天读的页数都前一天多3页,第11天读了60页,正好读完。这本书共有多少页?

 思路导航根据条件“他每天读的页数都比前一天多3页”可以知道他每天读的页数是按一定规律排列的数,即30、33、36、……57、60。要求这本书共多少页也就是求出这列数的和。这列数是一个等差数列,首项=30,末项=60,项数=11.因此可以很快得解:

 (30+60)×11÷2=495(页)

 想一想:如果把“第11天”改为“最后一天”该怎样解答?

 练习1:

 1.刘师傅做一批零件,第一天做了30个,以的每天都比前一天多做2个,第15天做了48个,正好做完。这批零件共有多少个?

 2.胡茜读一本故事书,她第一天读了20页,从第二天起,每天读的页数都比前一天多5页。最后一天读了50页恰好读完,这本书共有多少页?

 3.丽丽学英语单词,第一天学会了6个,以后每天都比前一天多学1个,最后一天学会了16个。丽丽在这些天中学会了多少个英语单词?

 例题230把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试几次?

 思路导航开第一把锁时,如果不凑巧,试了29把钥匙还不行,那所剩的一把就一定能把它打开,即开第一把锁至多需要试29次;同理,开第二把锁至多需试28次,开第三把锁至多需试27次……等打开第29把锁,剩下的最后一把不用试,一定能打开。所以,至多需试 29+28+27+…+2+1=(29+1)×29÷2=435(次)。

 练习2:

 1.有80把锁的钥匙搞乱了,为了使每把锁都配上自己的钥匙,至多要试多少次?

 2.有一些锁的钥匙搞乱了,已知至多要试28次,就能使每把锁都配上自己的钥匙。一共有几把锁的钥匙搞乱了?

 3.有10只盒子,44只羽毛球。能不能把44只羽毛球放到盒子中去,使各个盒子里的羽毛球只数不相等?

 例题3某班有51个同学,毕业时每人都和其他的每个人握一次手。那么共握了多少次手?

 思路导航假设51个同学排成一排,第一个人依次和其他人握手,一共握了50次,第二个依次和剩下的人握手,共握了49次,第三个人握了48次。依次类推,第50个人和剩下的一人握了1次手,这样,他们握手的次数和为:

 50+49+48+…+2+1=(50+1)×50÷2=1275(次).

 练习3:

 1.学校进行乒乓球赛,每个选手都要和其他所有选手各赛一场。如果有21人参加比赛,一共要进行多少场比赛?

 2.在一次同学聚会中,一共到43位同学和4位老师,每一位同学或老师都要和其他同学握一次手。那么一共握了多少次手?

 3.假期里有一些同学相约每人互通两次电话,他们一共打了78次电话,问有多少位同学相约互通电话?

 例题4求1 ~ 99 这99个连续自然数的所有数字之和。

 思路导航首先应该弄清楚这题是求99个连续自然数的数字之和,而不是求这99个数之和。为了能方便地解决问题,我们不妨把0算进来(它不影响我们计算数字之和)计算0~99这100个数的数字之和。这100个数头尾两配对后每两个数的数字之和都相等,是9+9=18,一共有 100÷2=50对,所以,1~99这99个连续自然数的所有数字之和是18×50=900。

 练习4:

 1.求1~199这199个连续自然数的所有数字之和。

 2.求1~999这999个连续自然数的所有数字之和。

 3.求1~3000这3000个连续自然数的所有数字之和。

 .

 例题5求1~209这209个连续自然数的全部数字之和。

 思路导航不妨先求0~199的所有数字之和,再求200~209的所有数字之和,然后把它们合起来。0~199的所有数字之和为(1+9×2)×(200÷2)=1900,200~209的所有数字之和为2×10+1+2+…+9=65。所以,1~209这209个连续自然数的全部数字之和为1900+65=1965。

 练习5:

 1.求1~308连续自然数的全部数字之和。

 2.求1~2009连续自然数的全部数字之和。

 3.求连续自然数2000~5000的全部数字之和。

四年级小学生奥数数学能力展示题

四年级是一个承前启后的阶段,学习内容的难度和广度有所增加,各种竞赛任务和招生考试的成绩重要性大大增加,不论自己的孩子是刚刚开始学习奥数,还是已经着手为竞赛、升学做准备,如何更好的完成四年级的学习计划,如何做好四年级和五年级的过渡,如何规划小升初之前的这两年时间是每个家长都要面对的问题。

1、未来会怎么样——两极分化加速

很多家长等到孩子五六年级的时候才开始四处报辅导班,但却怎么也追赶不上那些从低年级就开始学习奥数的同学,而小升初的压力又迫在眉睫,这个时候才追悔莫及,恨晚矣!计数中的加法原理和乘法原理,应用题的行程问题,平面几何中的三角形等积变化三大块内容都是四年级新学的内容,又是今后各类考试的重要考察内容。因此错过了四年级,就等于错过了学习奥数的最佳时机。病急乱投医,不如提早预防!

2、两年时间,认真规划

学生在两年时间里一定要扎实学习奥数知识。整个学习过程要按梯度进行,切莫一味做难题,根据学生学习情况,一步一个台阶。早做规划,早做准备。

3、学习真的很愉快

对于奥数入门的学生,刚刚接触奥数肯定有一定难度,如果孩子再没有兴趣,自然会抵触,对于四年级的孩子来说,时间和精力是浪费不起的。所以激发孩子的兴趣为第一。那么找一位孩子喜欢的老师就是学习的重中之重。

一位好的老师能够让孩子迅速喜欢上课堂,以自己的人格魅力感染学生。在课堂上,老师不仅是孩子的是师长,也是孩子的朋友,和孩子们一起探讨问题,一起思考,甚至一起和孩子们玩耍,让老师成为孩子们的知己。在老师的感染下,使孩子们养成良好的学习习惯,在喜欢老师的同时喜欢数学。享受每天学习的快乐时光!

学习重点难点解析:

1、计算

计算是贯穿整个小学阶段的重点,每个年级奥数的学习都以计算为基础,较好的计算能力是学好其它章节,取得优异成绩的保证。每个年级的计算有每个年级的特点,四年级的计算以加入了小数的计算为主,对于奥数基础扎实的同学并且希望在五年级取得一些成绩的同学还应该加入一些分数的计算。四年级计算应该掌握的重点题型有多位数的计算,小数的基本运算,小数的简便运算等。其中,多位数的计算主要以通过缩放讲多位数凑成各位数全是9的多位数,再利用乘法的分配率进行计算。小数的简便运算主要与等差数列求和、乘法的分配率和结合率、换元法等结合在一起,需要同学们对各种题型熟练的掌握,尤其是多位数的计算。最后,小数计算的重点还是最基础的小数的加减乘除混合运算,在初学小数时由于小数点的原因计算经常出错,如果计算不准确,再好的方法和技巧都无从谈起。所以,四年级学习计算的重点在于以基础计算为主,掌握各种简便运算技巧,提高准确度和速度。

2、平均数问题

在学习平均数问题的时候一定要先对平均数的概念有很好的理解。我们在授课过程中经常发现绝大多数同学在解平均数问题时经常犯一个错,尤其是在行程问题中的一道题,错误率最高。小明从学校到家速度为12,从家到学校速度为24,问往返的平均速度是多少?很多同学答案都是18,误以为平均数度就是速度的平均,这是不对的。

在学习平均数问题的时候还要会利用基准数处理一大串数据的求和问题和求平均数的问题。很多复杂的平均数问题都是可以利用浓度三角的方法来解决的,尤其是思维导引中后面的一些复杂的平均数问题,同学们应该尝试用浓度三角的方法来解决平均数问题。平均数问题的学习对以后浓度问题的学习很有好处,因为大部分平均问题的题型和浓度问题的题型从本质上来讲是相同的。

3、行程问题

四年级行程问题要掌握以下各类的问题:相遇问题、追及问题、火车相遇问题、流水行船问题、多次相遇问题等。首先,我们要对基本的相遇问题和追及问题有非常深刻的了解,在学习过程中经常有同学到六年级了对于追及问题中两个人所走的时间是否相等还经常容易出错。其次,我们要熟悉并掌握火车相遇问题和流水行船问题这两个行程问题中最基本的专题,对我们后面复杂行程问题的学习起到非常大的帮助。最后,要掌握行程问题中解决复杂问题常用的技巧,划线段的习惯,并养成良好、简洁的解题习惯。画线段图的方法是解决很多复杂行程问题常用的方法,很多同学在画线段图的时候不够简洁,常常画出的线段图中多余的线段和条件太多,导致画出的线段图比题目本身还复杂,无法分析求解。在平时的学习中应该尽量模仿老师,养成良好的解题习惯。

4、排列组合

排列组合是对上学期所学的加法原理和乘法原理两讲的一个升华。在加法原理和乘法原理中大家对分步和分类有了一定程度的理解和掌握,排列组合在此基础上提供了更专业更有效解决计数问题的方法。在排列组合中首先要对排列组合的概念、排列数与组合数的计算、排列与组合的区别等有很好的理解,尤其是排列和组合的区分上,需要对一些经典例题的掌握从而来理解排列和组合的区别。同时,很多问题好需要结合分类分步方法和排列组合的原理来解题,并不是单纯的排解组合公式的应用。对于一些基础不好的同学,一定要在熟练掌握加法原理和乘法原理之后再来学习排列组合的知识。对于一些排列组合常见的题型和常用的方法要做到信手拈来。

5、几何计数与周期性问题

几何计数和周期性问题相对于行程和排列组合来说是两个较小的专题,但是也是各大竞赛和入学考试常见题型,尤其是很多综合题同时包含数论和周期性问题的相关知识点,是竞赛和备考的重中之重。几何级数的掌握要从线段、角、三角形、长方形开始,学会用简单的方法来解决复杂计数问题的步骤。而周期性问题常和等差数列、数论结合在一起,同学在做题题时经常容易出错,需要在这方面的加大做题量。

#小学奥数# 导语但凡数学能力比较强的孩子,他们的逻辑思维能力是比较强的。以下是 整理的《四年级小学生奥数数学能力展示题》相关资料,希望帮助到您。

1.四年级小学生奥数数学能力展示题 篇一

 1.765×213÷27+765×327÷27

 解:原式=765÷27×(213+327)=765÷27×540=765×20=15300

 2.(9999+9997+…+9001)-(1+3+…+999)

 解:原式=(9999-999)+(9997-997)+(9995-995)+……+(9001-1)

 =9000+9000+…….+9000(500个9000)

 =4500000

 3.19981999×19991998-19981998×19991999

 解:(19981998+1)×19991998-19981998×19991999

 =19981998×19991998-19981998×19991999+19991998

 =19991998-19981998

 =10000

 4.(873×477-198)÷(476×874+199)

 解:873×477-198=476×874+199

 因此原式=1

 5.2000×1999-1999×1998+1998×1997-1997×1996+…+2×1

 解:原式=1999×(2000-1998)+1997×(1998-1996)+…

 +3×(4-2)+2×1

 =(1999+1997+…+3+1)×2=2000000。

2.四年级小学生奥数数学能力展示题 篇二

 1、鸡兔同笼,共有足248只,兔比鸡少52只,那么免有()只,鸡有()只。

 2、工人运青瓷花瓶250个,规定完整运一个到目的地给运费20元,损坏一个倒赔100元,运完这批花瓶后,工人共得4400元,则损坏了()只。

 2、有2角、5角和1元人民币20张,共计12元,则1元有()张,5角有()张,2角有()张。

 3、班主任张老师带五年级(2)50名同学栽树,张老师一人栽5棵,男生一人栽3棵,女生一人栽2棵,总共栽树120棵。问()名男生,()名女生。

 4、大油瓶一瓶装4千克,小油瓶2瓶装1千克,现有100千克油装了共60个瓶子。问大瓶子有()个,小瓶子有()个。

 5、有蜘蛛、蜻蜓、蝉三种动物共18只,共有腿118条,翅膀20对(蜘蛛8条腿;蜻蜓6条腿,2对翅膀;蝉6条腿,1对翅膀)。三种动物各几只?

3.四年级小学生奥数数学能力展示题 篇三

 1、林下小学购买的排球是篮球的3倍,排球比篮球多18只,购买的排球和篮球各有多少只?购买的排球和篮球共有多少只?

 2、有大小两个书架,大书架上书的本数是小书架上的4倍,如果从大书架上取出150本放到小书架上,这时,两书架上的书的本数相等。大小书架原来各有多少本?

 3、老猫和小猫去钓鱼,老猫钓的是小猫的3倍。如果老猫给小猫3条后,小猫比老猫还少2条。两只猫各钓多少条鱼?

 4、张老师买回篮球比足球多83个球,其中篮球比足球的2倍多5个,这两种球各有多少个?

 5、副食店中白糖的千克数比红糖的3倍少35千克,已知白糖比红糖多41千克。副食店有白糖、红糖各多少千克?

4.四年级小学生奥数数学能力展示题 篇四

 1、6辆大卡车5趟可以运走50吨沙,9辆小卡车4趟可以运走48吨沙。现在有大小卡车一共60辆,这些卡车一起运送3趟可以运走沙261吨。那么有多少辆大卡车?

 2、某处楼梯一共有10级台阶,若每步走1级或2级台阶,8步正好走完。那么,走此楼梯有多少种不同的走法?

 3、A和B两个同学同时从甲地出发到乙地,A每分钟行50米,B每分钟行60米,B到达乙地后立即返回,若两人从出发到相遇用了10分钟,则甲乙两地相距多少米?

 4、君君和大伟早晨8点整从甲地出发去乙地,君君开车,速度每小时60千米;大伟步行,速度为每小时4千米;如果君君到底乙地后停留1小时立即返回,恰好在10点整遇到正在前往乙地的大伟。那么甲乙两地之间的距离是多少千米?

 5、在后面写一串数字,从第5个数字开始,每个数字都是它前面两个数字乘积的个位数字。这样得到一串数字:1,9,8,9,2,8,6,8,8,4,2……那么这串数字中,前2005个数字和是多少?

5.四年级小学生奥数数学能力展示题 篇五

 1、甲、乙两人相距10千米,甲在前,乙在后,甲每小时行5千米,乙每小时行6千米。两人同时出发同向而行,乙几小时能追上甲?

 2、书架上放有3本不同的数学书,5本不同的语文书,6本不同的英语书。

 (1)若从这些书中任取一本,有多少种不同的取法?

 (2)若从这些书中取数学书、语文书、英语书各一本,有多少种不同的取法?

 (3)若从这些书中取不同的科目两本,有多少种不同的取法?

 3、学校进行篮球比赛,上场时10名队员互相握了一次手,一共握了多少次手?

 4、小林为家里做饭,他择菜要5分钟,淘米要2分钟,煮饭要15分钟,切菜花4分钟。如果只有单火头煤气灶,做完这些事情至少需要多少分钟?

 5、24辆卡车一次能运货物192吨,同样的卡车36辆,一次能运货物多少吨?

 6、张师傅计划加工552个零件,前五天加工345个,照这样计算,这批零件还要几天加工完?

 7、修一条长1944米的水渠,54人12天修好。若增加18人,天数缩小到原来的一半,可以修水渠多少米?

关于“小学四年级奥数题:巧妙求和”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(0)
上一篇 2024年05月24日
下一篇 2024年05月24日

相关推荐