我来教大家“有麻将神器吗知乎推荐小说下载”(确实是有挂)-哔哩哔哩

网上有关“小学四年级奥数题目及答案。。。”话题很是火热,小编也是针对小学四年级奥数题目及答案。。。寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。

您好:手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,咨询加微信【】很多玩家在这款游戏中打牌都会发现很多用户的牌特别好,总是好牌,而且好像能看到其他人的牌一样。所以很多小伙伴就怀疑这款游戏是不是有挂,实际上这款游戏确实是有挂的
http://www.boyicom.net/sheng/1.jpg
1.手机麻将有挂是真的吗这款游戏可以开挂,确实是有挂的,通过添加客服微信 2.咨询软件加微信【】在"设置DD功能DD微信手麻工具"里.点击"开启". 3.打开工具.在"设置DD新消息提醒"里.前两个选项"设置"和"连接软件"均勾选"开启"(好多人就是这一步忘记做了) 4.打开某一个微信组.点击右上角.往下拉."消息免打扰"选项.勾选"关闭"(也就是要把"群消息的提示保持在开启"的状态.这样才能触系统发底层接口)

和倍问题

1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?

我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?

(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)

(2)秦奋的年龄:40÷5=8岁

(3)妈妈的年龄:8×4=32岁

综合:40÷(4+1)=8岁 8×4=32岁

为了保证此题的正确,验证

(1)8+32=40岁 (2)32÷8=4(倍)

计算结果符合条件,所以解题正确。

2. 甲乙两架飞机同时从机场向相反方向飞行,3小时共飞行3600千米,甲的速度是乙的2倍,求它们的速度各是多少?

已知两架飞机3小时共飞行3600千米,就可以求出两架飞机每小时飞行的航程,也就是两架飞机的速度和。看图可知,这个速度和相当于乙飞机速度的3倍,这样就可以求出乙飞机的速度,再根据乙飞机的速度求出甲飞机的速度。

甲乙飞机的速度分别每小时行800千米、400千米。

3. 弟弟有课外书20本,哥哥有课外书25本,哥哥给弟弟多少本后,弟弟的课外书是哥哥的2倍?

思考:(1)哥哥在给弟弟课外书前后,题目中不变的数量是什么?

(2)要想求哥哥给弟弟多少本课外书,需要知道什么条件?

(3)如果把哥哥剩下的课外书看作1倍,那么这时(哥哥给弟弟课外书后)弟弟的课外书可看作是哥哥剩下的课外书的几倍?

思考以上几个问题的基础上,再求哥哥应该给弟弟多少本课外书。根据条件需要先求出哥哥剩下多少本课外书。如果我们把哥哥剩下的课外书看作1倍,那么这时弟弟的课外书可看作是哥哥剩下的课外书的2倍,也就是兄弟俩共有的倍数相当于哥哥剩下的课外书的3倍,而兄弟俩人课外书的总数始终是不变的数量。

(1)兄弟俩共有课外书的数量是20+25=45。

(2)哥哥给弟弟若干本课外书后,兄弟俩共有的倍数是2+1=3。

(3)哥哥剩下的课外书的本数是45÷3=15。

(4)哥哥给弟弟课外书的本数是25-15=10。

试着列出综合算式:

4. 甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,这时甲库存粮是乙库存粮的2倍,两个粮库原来各存粮多少吨?

根据甲乙两个粮库原来共存粮170吨,后来从甲库运出30吨,给乙库运进10吨,可求出这时甲、乙两库共存粮多少吨。根据“这时甲库存粮是乙库存粮的2倍”,如果这时把乙库存粮作为1倍,那么甲、乙库所存粮就相当于乙存粮的3倍。于是求出这时乙库存粮多少吨,进而可求出乙库原来存粮多少吨。最后就可求出甲库原来存粮多少吨。

甲库原存粮130吨,乙库原存粮40吨。

列方程组解应用题(一)

1. 用白铁皮做罐头盒,每张铁皮可制盒身16个,或制盒底43个,一个盒身和两个盒底配成一个罐头盒,现有150张铁皮,用多少张制盒身,多少张制盒底,才能使盒身与盒底正好配套?

依据题意可知这个题有两个未知量,一个是制盒身的铁皮张数,一个是制盒底的铁皮张数,这样就可以用两个未知数表示,要求出这两个未知数,就要从题目中找出两个等量关系,列出两个方程,组在一起,就是方程组。

两个等量关系是:A做盒身张数+做盒底的张数=铁皮总张数

B制出的盒身数×2=制出的盒底数

用86张白铁皮做盒身,64张白铁皮做盒底。

奇数与偶数(一)

其实,在日常生活中同学们就已经接触了很多的奇数、偶数。

凡是能被2整除的数叫偶数,大于零的偶数又叫双数;凡是不能被2整除的数叫奇数,大于零的奇数又叫单数。

因为偶数是2的倍数,所以通常用 这个式子来表示偶数(这里 是整数)。因为任何奇数除以2其余数都是1,所以通常用式子 来表示奇数(这里 是整数)。

奇数和偶数有许多性质,常用的有:

性质1 两个偶数的和或者差仍然是偶数。

例如:8+4=12,8-4=4等。

两个奇数的和或差也是偶数。

例如:9+3=12,9-3=6等。

奇数与偶数的和或差是奇数。

例如:9+4=13,9-4=5等。

单数个奇数的和是奇,双数个奇数的和是偶数,几个偶数的和仍是偶数。

性质2 奇数与奇数的积是奇数。

偶数与整数的积是偶数。

性质3 任何一个奇数一定不等于任何一个偶数。

1. 有5张扑克牌,画面向上。小明每次翻转其中的4张,那么,他能在翻动若干次后,使5张牌的画面都向下吗?

同学们可以试验一下,只有将一张牌翻动奇数次,才能使它的画面由向上变为向下。要想使5张牌的画面都向下,那么每张牌都要翻动奇数次。

5个奇数的和是奇数,所以翻动的总张数为奇数时才能使5张牌的牌面都向下。而小明每次翻动4张,不管翻多少次,翻动的总张数都是偶数。

所以无论他翻动多少次,都不能使5张牌画面都向下。

2. 甲盒中放有180个白色围棋子和181个黑色围棋子,乙盒中放有181个白色围棋子,李平每次任意从甲盒中摸出两个棋子,如果两个棋子同色,他就从乙盒中拿出一个白子放入甲盒;如果两个棋子不同色,他就把黑子放回甲盒。那么他拿多少后,甲盒中只剩下一个棋子,这个棋子是什么颜色的?

不论李平从甲盒中拿出两个什么样的棋子,他总会把一个棋子放入甲盒。所以他每拿一次,甲盒子中的棋子数就减少一个,所以他拿180+181-1=360次后,甲盒里只剩下一个棋子。

如果他拿出的是两个黑子,那么甲盒中的黑子数就减少两个。否则甲盒子中的黑子数不变。也就是说,李平每次从甲盒子拿出的黑子数都是偶数。由于181是奇数,奇数减偶数等于奇数。所以,甲盒中剩下的黑子数应是奇数,而不大于1的奇数只有1,所以甲盒里剩下的一个棋子应该是黑子。

奥赛专题 -- 称球问题

例1 有4堆外表上一样的球,每堆4个。已知其中三堆是正品、一堆是次品,正品球每个重10克,次品球每个重11克,请你用天平只称一次,把是次品的那堆找出来。

解 :依次从第一、二、三、四堆球中,各取1、2、3、4个球,这10个球一起放到天平上去称,总重量比100克多几克,第几堆就是次品球。

2 有27个外表上一样的球,其中只有一个是次品,重量比正品轻,请你用天平只称三次(不用砝码),把次品球找出来。

解 :第一次:把27个球分为三堆,每堆9个,取其中两堆分别放在天平的两个盘上。若天平不平衡,可找到较轻的一堆;若天平平衡,则剩下来称的一堆必定较轻,次品必在较轻的一堆中。

第二次:把第一次判定为较轻的一堆又分成三堆,每堆3个球,按上法称其中两堆,又可找出次品在其中较轻的那一堆。

第三次:从第二次找出的较轻的一堆3个球中取出2个称一次,若天平不平衡,则较轻的就是次品,若天平平衡,则剩下一个未称的就是次品。

例3 把10个外表上一样的球,其中只有一个是次品,请你用天平只称三次,把次品找出来。

解:把10个球分成3个、3个、3个、1个四组,将四组球及其重量分别用A、B、C、D表示。把A、B两组分别放在天平的两个盘上去称,则

(1)若A=B,则A、B中都是正品,再称B、C。如B=C,显然D中的那个球是次品;如B>C,则次品在C中且次品比正品轻,再在C中取出2个球来称,便可得出结论。如B<C,仿照B>C的情况也可得出结论。

(2)若A>B,则C、D中都是正品,再称B、C,则有B=C,或B<C(B>C不可能,为什么?)如B=C,则次品在A中且次品比正品重,再在A中取出2个球来称,便可得出结论;如B<C,仿前也可得出结论。

(3)若A<B,类似于A>B的情况,可分析得出结论。

奥赛专题 -- 抽屉原理

例1一个小组共有13名同学,其中至少有2名同学同一个月过生日。为什么?

分析每年里共有12个月,任何一个人的生日,一定在其中的某一个月。如果把这12个月看成12个“抽屉”,把13名同学的生日看成13只“苹果”,把13只苹果放进12个抽屉里,一定有一个抽屉里至少放2个苹果,也就是说,至少有2名同学在同一个月过生日。

例 2任意4个自然数,其中至少有两个数的差是3的倍数。这是为什么?

分析与解首先我们要弄清这样一条规律:如果两个自然数除以3的余数相同,那么这两个自然数的差是3的倍数。而任何一个自然数被3除的余数,或者是0,或者是1,或者是2,根据这三种情况,可以把自然数分成3类,这3种类型就是我们要制造的3个“抽屉”。我们把4个数看作“苹果”,根据抽屉原理,必定有一个抽屉里至少有2个数。换句话说,4个自然数分成3类,至少有两个是同一类。既然是同一类,那么这两个数被3除的余数就一定相同。所以,任意4个自然数,至少有2个自然数的差是3的倍数。

例3有规格尺寸相同的5种颜色的袜子各15只混装在箱内,试问不论如何取,从箱中至少取出多少只就能保证有3双袜子(袜子无左、右之分)?

分析与解试想一下,从箱中取出6只、9只袜子,能配成3双袜子吗?回答是否定的。

1.有甲、乙两只桶,甲桶盛了半桶水,乙桶盛了不到半桶纯酒精。先将甲桶的水倒进乙桶,倒进的量与乙桶的酒精量相等;再将乙桶的溶液倒进甲桶,倒入的数量与甲棋剩下的水相等;再将甲桶的溶液倒进乙桶,倒进的数量与乙桶剩下的溶液相等;最后再将乙桶的溶液倒进甲桶,倒入的数量与甲桶剩下的溶液相等。此时,恰好两桶溶液的数量相等。求此时甲、乙两桶酒精溶液浓度之比。

 2.甲、乙、丙、丁四位盲人到河边钓鱼,到了中午他们把钓的鱼都放在一个篓子里,就各自躺在岸边的柳树下睡觉了。甲先醒了,就将篓子里的鱼平均分成四份,还剩一条,他带走一份先回家了;乙醒来时以为另三人还在睡觉,也把篓子里的鱼平均分成四份,还是剩一条,他也带走一份回家了;丙醒来后同样将篓子里的鱼平均分成四份,也剩一条,然后带走一份回家了;丁醒后也将篓子里的鱼分成四份,恰好分光,他也带走一份回家了

 问:他们四人至少钓了多少条鱼?各带走几条?篓子里还剩几条?

 3.唐僧师徒四人西天取经,一日行至一山村,唐僧叫猪八戒去讨点吃的充饥,当日正值元宵节,山民施舍汤元若干,八戒尝了一个,美味可口,然后点了一下汤元的数目,刚好可等分成四份,八戒正饿的发慌,先吃掉了自己的一份,吃完后仍感不足,接着又偷偷吃了一个,说也奇怪,剩下的汤元又可等分为四份,八戒大喜,忍不住又吃掉一份,因为汤元的数目十分巧妙,使得八戒仍照前两次的方法,接连吃了第三次、第四次,当八戒回到师父身旁时,汤元数目已不足100个了。

 问:八戒一共讨回多少个汤元?

 第一种就是:一个数加上3,再减4,乘以5,再除以6,结果是120,求这个数。第二种:是本来这个数是267,结果做减法的时候,把十位看错了,百位也看错了,结果就变成了多少多少,那么原来正确的结果是几?

 第三种:最有趣的一种:说池塘里的草每天都长前一天的一倍,就是今天长4分之一池塘,明天就长2分之一,后天就长满了整个池塘了。问题是长了20天长满了整个池塘,那么第几天长满了半个池塘?

 第四种是最麻烦的'一种:2004年均瑶杯四年级的题目:甲乙丙丁四人共有64张卡片,甲拿出自己的一部分,给了乙丙丁,使他们的卡片都增长一倍;继而乙拿出自己的一部分给了甲丙丁,使他们的卡片也都增长一倍;丙丁也这样做了。最后他们四人的卡片一样多。问:原来这四人各有几张卡片?

 4.有26吨石子分成甲、乙两堆,乙堆运出一半给甲后,甲堆又运出一半给乙堆,这时再从乙堆运出5吨给甲堆,这样甲堆就比乙堆多2吨。最初甲、乙两堆各有多少吨?

 5.某数减4,乘以4,加上4,除以4,结果仍为4,求这个数.

 6.某数乘以0.5的积加上0.6除以0.4的商,和是49.8,求这个数.

 7.小强看一本卡通书,第一天看了这本书的一半又5页,第二天看了余下的一半又10页,还有8页没看,问这本卡通书共有多少页?

 8.有一桶油,每次抽出桶里油的一半,连续这样抽了5次后,桶里还有油5千克,问这个桶里原有油多少千克?

 9.水果批发站,第一天批发出水果是库存的一半少20箱,第二天又批出剩余的一半多30箱,第三天运进200箱水果,使库里的水果增加了2倍,求原有水果多少箱?

 10.甲、乙、丙共有24张画片,甲把自己的一半平分给乙、丙,然后乙把自己的一半平分给了丙、甲,最后丙也把自己的一半平分给了甲、乙.这时甲、乙、丙三人的画片数完全相同,问他们三人原有画片各多少张?

 11.一个数加上3,减去5,乘以4,除以8得10,这个数是多少?

 12.一个数减去1,乘以3,再加上2,最后除以4,结果是5,这个数是多少?

 13.猴子摘桃,第一天摘了树上桃子的一半,第二天又摘上了余下桃子的一半,这时树上还有15个桃子,原来树上有多少个桃子?

 14.猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半多1个,这时树上还有15个桃子,原来树上有多少个桃子?

 15.猴子摘桃,第一天摘了树上桃子的一半多1个,第二天又摘上了余下桃子的一半少1个,这时树上还有15个桃子,原来树上有多少个桃子?

 16.煤场有一批煤,第一次运走这批煤的一半,第二天运走320吨地,第三次又运走剩下煤的一半又20吨,结果还剩250吨。煤场原有煤多少吨?

 17.小明的爷爷今年的年龄加上17后,缩小4倍,再减去15之后,扩大10倍,恰好是100岁,小明爷爷今年是多少岁?

 18.一筐鸡蛋,第一天吃了全部的一半,地二天又吃了余下的一半,第三天又吃了4只,刚好吃完。这筐鸡蛋有多少只?

 19.一根电线,第一次剪去全长的一半多2米,第二次剪去余下的一半多3米,还剩1米。这根电线原有多少米?

 20.兔妈妈带着小白兔和小黑兔去拔萝卜,小白兔把全部的萝卜平均分成三份,运走了其中的一份;小黑兔又把余下的萝卜平均分成三份,运走了其中的一份;兔妈妈运走了剩下的16个萝卜。小白兔和小黑兔各运走多少个萝卜?

关于“小学四年级奥数题目及答案。。。”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!

(0)
上一篇 2024年05月23日
下一篇 2024年05月23日

相关推荐