网上有关“一年级小朋友数学故事阅读【三篇】”话题很是火热,小编也是针对一年级小朋友数学故事阅读【三篇】寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
#一年级# 导语数学不仅是一门科学,而且是一种普遍适用的技术。它是科学的大门和钥匙,学数学是令自己变的理性的一个很重要的措施,数学本身也有自身的乐趣。以下是 整理的相关资料,希望对您有所帮助。
篇一
六只脚的怪物
树林里的怪事越来越多。夜里不知什么嚎叫了一宿。早上起来,小白兔和山羊发现地上有六只脚怪物的脚印。
小白兔边跑边喊:“不好啦!树林里发现了六只脚的怪物,大家快来看呀!”
大家都跑来看这些怪脚印。猴子问老山羊:“您认识这脚印吗?”
老山羊拿出放大镜仔细看了看,摇摇头说:“真怪?前四个脚印非常像狼的脚印,但后两个脚印就不是狼的了。”松鼠忙问:“那是什么动物的脚印呢?”“黑乎乎的两个圈印儿,连有几个脚趾都看不出来。”老山羊又摇摇头。小白兔紧张地问:“这个怪物长着四只狼爪,它一定吃我们兔子,这可怎么办呢?”“嘿嘿”猴子冷笑了两声:“我只见过六只足的小昆虫,还没见过六只脚的大怪物。我倒想会会这个怪物呢?”猴子在鹿姑娘耳边小声嘀咕了几句。一会儿,鹿姑娘拿着一块黑板跑过来,她大叫道:“今天晚上由兔子和山鸡在树林值班,人数写在小黑板上!”
夜幕降临了。月光透过树枝洒在地上。一头六只脚怪物出现了,他一前一后长着两个脑袋,两个脑袋四处不停地张望,很快就发现了挂在树上的小黑板,黑板上写着:
“今天由兔子和山鸡在东西两头值班,先说东边:如果把15只兔子换成15只山鸡,那么兔子和山鸡的数目相等;如果把10只山鸡换成兔子,那么兔子就是山鸡的三倍。再说西边:西边的兔子数等于东边的山鸡数,西边的山鸡数等于东边的兔子数。”
“哈哈,兔子!”前面那个头大叫。“嘻嘻,山鸡!”后面那个头大喊。前面那个头说:“老弟,你算算哪边兔子多?”
“好说,”后面那个头说:“我敢肯定,东边的兔子比山鸡多30(15×2)只,不然的话,怎么会换掉15只还能相等呢?”
前面那个头说:“对!这样假设山鸡为X只,兔子就是(X+30)只,再根据条件可得X+30+10=3(X-10),求得X=35,也就是说东边山鸡35只,那么兔子就是65只了,西边正好相反,山鸡65只,兔子35只。”“哈,东边兔子多,咱们去东边。”前面那个头往东走。“不,西边山鸡多,去西边。”后面那个头往西走。只听得“哧啦”一声,一个怪物变成了两个。
篇二
反证法
反证法一节,可以说是一个难点。因为以前我们的证明,所采用的方法均为直接证法,由已知到结论,顺理成章。而对于属于间接证法的反证法,许多同学正是难以走出直接证法的局限,从而不能深刻或正确理解反证法思想。其实,反证法作为证明方法的一种,有时起着直接证法不可替代的作用。下面这两则故事,对于我们正确理解反证法很有帮助。
故事一:南方某风水先生到北方看风水,恰逢天降大雪。乃作一歪诗:“天公下雪不下雨,雪到地上变成雨;早知雪要变成雨,何不当初就下雨。”他的歪诗又恰被一牧童听到,亦作一打油诗讽刺风水先生:“先生吃饭不吃屎,饭到肚里变成屎;早知饭要变成屎,何不当初就吃屎。”
实际上,小牧童正是巧妙运用了反证法,驳斥了风水先生否定事物普遍运动的规律,只强调结果,不要变化过程的形而上学的错误观点:假设风水先生说的是真理,只强调变化最后的结果,不要变化过程也可,那么,根据他的逻辑,即可得出先生当初就应吃屎的茺唐结论。风水先生当然不会承认这个事实了。那么,显然,他说的就是谬论了。
这就是反证法的威力,一个原本非常复杂难证的哲学问题被牧童运用了“以其人之道,还其人之身”的反证法迎刃而解了。
如果说这则故事还尚不能让我们明白反证法的思路的话,不妨再看看故事二。
故事二:王戎小时候,爱和小朋友在路上玩耍。一天,他们发现路边的一棵树上结满了李子,小朋友一哄而上,去摘李子,独有王戎没动。等到小朋友们摘了李子一尝,原来是苦的!他们都问王戎:“你怎么知道李子是苦的呢?”王戎说:“假如李子不苦的话,早被路人摘光了,而这树上却结满了李子,所以李子一定是苦的。”
这是很的“道旁苦李”的故事。实质上王戎的论述,也正是运用了反证法,我们不妨把这则故事改编成象几何题目中的“已知、求证、证明”再和反证法的步骤进行对比,大家就明白了。
篇三
梅森素数
挪威计算机专家奥德·斯特林德莫通过参加一个名为“因特网梅森素数大搜索”(GIMPS)的国际合作项目,最近发现了第47个梅森素数,该素数为“2的42643801次方减1”。它有12837064位数,如果用普通字号将这个巨数连续写下来,它的长度超过50千米!
梅森素数的*
素数是在大于1的整数中只能被1和其自身整除的数(如2、3、5、7等等),素数有无穷多个。而形如“2的P次方减1”(其中指数P为素数)的素数称为梅森素数,以17世纪法国数学家梅森的名字命名。梅森素数是数论研究的一项重要内容,也是当今科学探索的热点和难点之一。
早在公元前4世纪,古希腊数学大师欧几里得就开创了探寻“2的P次方减1”型素数的先河。他在《几何原本》中论述完全数时就曾研究过这种特殊的素数。由于梅森素数有许多独特的性质和无穷的魅力,千百年来一直吸引着众多的数学家和无数的业余数学爱好者对它进行研究和探寻。2300多年来,人类仅发现47个梅森素数。由于这种素数珍奇而迷人,因此被人们誉为“数学珍宝”。
梅森素数的研究难度极大;它不仅需要高深的理论和纯熟的技巧,而且需要进行艰巨的计算。1772年,被誉为“数学英雄”的欧拉在双目失明的情况下,以惊人的毅力靠心算证明了“2的31次方减1”是第8个梅森素数,该素数有10位。
特别值得一提的是,中国数学家和语言学家周海中经过多年的研究,于1992年首先给出了梅森素数分布的精确表达式,为人们探究梅森素数提供了方便;后来这一重要成果被国际上命名为“周氏猜测”。
网格技术来助力
网格(Grid)这一崭新技术的出现使梅森素数的探究如虎添翼。1996年初美国数学家及程序设计师沃特曼编制了一个梅森素数计算程序,并把它放在网页上供数学家和业余数学爱好者免费使用;这就是的GIMPS项目。该项目采取网格计算方式,利用大量普通计算机的闲置时间来获得相当于超级计算机的运算能力。
为了激励人们寻找梅森素数和促进网格技术发展,设在美国的电子新领域基金会(EFF)于1999年3月向全世界宣布了为通过GIMPS项目来寻找新的更大的梅森素数而设立的奖金。它规定向第一个找到超过1000万位数的个人或机构颁发10万美元。
去年8月,美国人史密斯发现了第46个梅森素数“2的43112609次方减1”,该素数有12978189位。它是目前已知的素数。他获得了EFF颁发的10万美元大奖。去年底,它被《时代》周刊评为“年度50项发明”之一。
13年来,人们通过GIMPS项目找到了13个梅森素数,其发现者来自美国、英国、法国、德国、加拿大和挪威。世界上已有170多个国家和地区近18万人参加了这一项目,并动用了37万多台计算机联网来进行网格计算。该项目的计算能力已超过当今世界上任何一台最先进的超级矢量计算机的计算能力,运算速度超过每秒400万亿次。
梅森素数的意义
梅森素数在当代具有十分丰富的理论意义和实用价值。它是发现已知素数的最有效途径;它的探究推动了数学皇后———数论的研究,促进了计算技术、程序设计技术、网格技术和密码技术的发展以及快速傅立叶变换的应用。
梅森素数的探究需要多种学科和技术的支持,所以许多科学家认为:它的研究成果,一定程度上反映了一国的科技水平。英国顶尖科学家索托伊甚至认为它是人类智力发展在数学上的一种标志,也是科学发展的里程碑。
精选适合一年级学生的数学故事三篇
一年级的小学生都喜欢看一些数学趣味 故事 ,这些趣味故事可以更大开展小学生的思维能力。下面就让我给大家分享一些一年级趣味数学故事吧,希望能对你有帮助!
一年级趣味数学故事篇(一)
从前有个大地主叫古依木,雇了一个叫扎克的长工,答应每年给一头牛的工钱。到了年底,古依木对扎克说,你的工钱存在我这儿,将来可以办大事。老实的扎克同意了。一晃19年过去了,扎克年老力衰了,大地主古依木就想把他辞退。一天,古依木把扎克叫来,说:?你在我家做了19年,现在我给你19斤油,你走吧!?扎克一听急了,说:?老爷,你讲的每年给?一头牛?的工钱,怎么变成?一斤油?了呢!?古依木两眼一瞪,咆哮说:?那是你听错了,老爷还会赖你吗?不容分说就把他赶出了门。
扎克提了19斤油呆呆的坐在路旁。这时正好看见阿凡提骑着小毛驴过来了。扎克连忙把这事告诉阿凡提,请他帮忙算回工钱。阿凡提想了片刻说,好,我和你一起上古依木家里去评理。?
古依木在家里正在喝酒,冷不防阿凡提和扎克走了进来,古依木心里有点慌,装着笑脸道:?阿凡提先生驾到,不知有何贵干?阿凡提说:?扎克想做个小生意,特来借三两银子,由我作保,不知老爷肯不肯。?古依木一听,心宽了,连说:?有阿凡提先生作保,当然可以。扎克是老实人,年息对本对利就行了。?于是,三对六面写好了借据。古依木正要去拿银子,阿凡提拉住了他说:?办事情要公平,借你的钱是对本对利,那么,阿凡提每年一斤油存在你这里,也应该对本对利。?古依木眼珠一转,暗想十九斤油的利钱能有多少,大不了几百斤油吧!就说:?好吧,看在阿凡提先生的面上,算出多少,我照付就是了。?
于是,阿凡提拿过算盘说:头一年,工钱1斤,第二年加利息1斤,加工钱1斤,共3斤,第三年是7斤,第四年是15斤?不到一刻工夫,算出了结果,把大地主古依木吓得目瞪口呆。最后连连央求:?阿凡提先生,请你向扎克 说说 好话,我情愿还他19头牛的工钱!?
扎克拿到了19头牛的工钱,三两银子当然不借了。
请问小朋友,每年一斤油,按照古依木对本对利的算法,19年的本息账,到底是多少?告诉你,结果是524287斤油。你如不信,不妨自己算算看。
一年级趣味数学故事篇(二)
在距离现在一千七百多年前,中国是处于魏、蜀、吴三强鼎立的三国时代。
有一天,吴国的孙权送给魏国领袖曹操一只大象,长久居住在中原的曹操从来没有看过这种庞然大物,好奇地想知道这个大怪物的体重到底有多重?于是,他对着臣子们说:「谁有办法把这只大象称一称?」在场的人七嘴八舌地讨论着:有人回家搬出特制的秤,但大象实在太大了,一站上去,就把秤踩扁了;有人提议把大象一块一块地切下分开秤,再算算看加起来有多重,可是在场的人觉得太残忍了,而且曹操喜欢大象可爱模样,不希望为了秤重失去它。就在大家束手无策正想要放弃的时候,曹操七岁的儿子─曹冲,突然开口说:「我知道怎么秤了!」他请大家把大象赶到一艘船上,看船身沉入多少,在船身上做了一个记号。然后又请大家把大象赶回岸上,把一筐筐的石头搬上船去,直到船下沈到刚刚画的那一条线上为止。接着,他请大家把在船上的石头逐一称过,全部加起来就是大象的重量了!小朋友,曹冲是不是很聪明?在一千七百多年前的时代,曹冲的 方法 的确很聪明,可是,现代的工具非常发达,我们发明出许多的工具来称重的东西,不须要再大费周章地一筐筐地搬石头。
小朋友,请你和爸爸妈妈一起讨论,一只小狗、一袋砂石、一颗苹果、一卡车的木头、一台货柜车,分别要用什么工具来称重最适当?
一年级趣味数学故事篇(三)
现在人买狗,有些是为了看家防盗,有些是为了上山打猎,有些是为了侦查破案,有些是为了观赏消遣。古代人也会为了各种目的买狗。下面是中国古代数学书《九章算术》里一道关于买狗的应用题:
今有共买犬,人出五,不足九十;人出五十,适足。问人数、犬价各几何?
题目的大意是说,现在有几个人合买一条狗,每人出5文,还差90文;每人出50文,刚好够了。问有多少人,狗的价钱是多少。
第一次每人出5文,第二次改成出50文,增加的钱数是50-5=45(文)。
每人多拿出45文,刚好补足了原来短缺的钱数90文,所以人数是90?45=2,
狗的价钱是50?2=100(文)。
答案是:共有两个人,买一只狗要100文。
《九章算术》里还有一些类似的问题,几个人合买一件东西,拿出来的钱有时候多了(盈),有时候不够(不足),有时候刚好(适足)。这种算术题型很常见,至今还叫做?盈亏问题?或?盈不足问题?,保留了《九章算术》的传统。
一年级趣味数学故事篇(四)
阿凡提运用他的聪明才智为人民行侠仗义,无情地嘲弄那些残暴而又愚昧无知的封建统治者,那些老爷们对阿凡提恨之入骨。
一天,国王召阿凡提进宫,煞有介事地对阿凡提说:?阿凡提先生,听说你经常在外面讲我的坏话,这样吧,人们都说你很聪明,我这里有一个问题,你如果能解答出来,我就释你无罪,如果答不出来,那就加重处罚。?原来,国王想用这个办法作借口来报复阿凡提。国王让人拿来了三个盒子,对阿凡提说:?这三个盒子中只有一个盒子里放着我的一粒珍珠。每个盒子上各写着一句话,但只有一句真话,其余都是假话。你给我找出珍珠在哪个盒子里。?阿凡提一看,第一个盒子是红色的,上面写着:?珍珠在这里?;第二个盒子是蓝色的,上面写着:?珍珠不在红盒子里?;第三个盒子是**的,上面写着:?珍珠不在这里?。阿凡提看完了盒子上的字,略一沉思,马上就指出了珍珠在哪个盒子里。国王和手下大臣一听,一个个都惊讶得半天说不出话来。国王只好把阿凡提放了。
聪明的小读者,你能找出珍珠在哪个盒子里吗?
在现实生活中,任何事情都遵循一个规律,要么是这,要么是那,不可能两者都是,这一规律叫排中律。如果珍珠在红盒子中,自然珍珠便不在黄盒子中,那么红盒子上的话和黄盒子上的话都是真话,这与?只有一句是真话?相矛盾,所以这是不可能的。如果珍珠在蓝盒子中,自然珍珠就不在红盒子和黄盒子中,那么蓝盒子和黄盒子上的话也都是真话。因此,这也是不可能的。因为珍珠在三个盒子中的一个盒子里,既然不在红盒子和蓝盒子里,那么一定在黄盒子里。
看了一年级趣味数学故事的人还看:
1. 小学数学教学有趣故事
2. 小学数学课堂小故事
3. 数学趣味小故事
4. 趣味数学小故事集锦
5. 幼儿趣味数学小故事大全精选
6. 小学数学教学故事
#一年级# 导语数学与我们的生活有着密切的联系,让学生认识到现实生活中蕴涵着大量的数学信息,数学在现实生活中有着广泛的应用,并从中体会到数学的价值,增进对数学的理解和应用数学的信心等。以下是 整理的相关资料,希望对您有所帮助。
篇一
聪明的小男孩
从前,一个国王经常给身边的大臣出难题来取乐,如果大臣答对了,他将用小恩小惠给点赏赐;如果答不出来,那将受罚,甚至被砍头。
一天,国王指着宫里的一个池塘问:“谁能说出池子里有多少桶水,我就赏他珠宝。如果说不出来,我就要‘赏’你们每人50大鞭。”大臣们被这突如其来的问题难住了。
正在大臣们心慌意乱之际,走过来一个放牛的小男孩。他问清了事情的缘由之后说:“我愿意见见这位国王。”
大臣们把小男孩带到了国王身边。国王见眼前的小男孩又黑又瘦又小,便怀疑说:“这个问题答上来有奖,答不上来可要被砍头的,你知道吗?”在场的人都替这个小男孩捏了一把汗,可小男孩却不慌不忙地回答出国王的问题。国王无奈之下,拿出珠宝奖励给了小男孩。小朋友们,你知道他是怎样回答的吗?
其实,国王出的是一道条件不足的问题。在正常的思维模式下是无法找出正确答案的。小男孩正好抓住这一关键。他是这样回答的:“这要看桶有多大:如果桶和池塘一样大,就是一桶水;如果桶只有池塘一半大,就是有两桶水;如果桶是池塘的三分之一大,就是3桶水……”
小男孩实际上打破了习惯性的思维模式,对具体的问题进行具体的分析,他的头脑多么聪明,多么灵活啊!
篇二
有一个年轻的小伙子来找刘先生,并自我介绍说:“我叫于江,这次我带领了一个旅游团到香港旅游,听说您的大酒店环境舒适,服务周到,我们想来住你们酒店。”
刘先生连忙热情地说:“欢迎,欢迎,不知贵团一共有多少人?”
“人嘛,还可以,是一个大团。”
刘先生心里一阵惊喜:一个大团,又是一笔大生意,真是太好了。
作为一个导游,于江看出了刘先生的心思,他慢条斯理地说:“先生,如果你能算出我团的人数,我们就住您们酒店了。”
“你请说吧。”刘先生自信地说。
“如果我把我的团平均分成四组,多出一人,再把每小组平均分成四份,结果又多出一人,再把分成的四小组分成四份,结果又多出一人,当然,也包括我,请问我们至少有多少人?”
“一共多少呢?”刘先生马上思考起来,他一定要接下这笔生意,“没有具体的数字,该如何下手呢?”他是精明的生意人,很快说出答案:“至少八十五人,对不对?”
于江先生高兴地说:“一点不错,就是八十五人。请说说您的算法。”
“人数最少的情况是最后一次四等分时,每份为一人,由此推理得到:第三次分之前有1×4+1=5(人),第二次分之前有5×4+1=21(人),第一次分之前有21×4+1=85(人)。”
“好,我们今天就住在您这儿了。”
“那你们有多少男的和女的?”
“有55个男的,30个女的。”
“我们这儿现在只有11人的房间,7人、5人的房间,你们想怎么住?”
“当然是先生您给安排了,但必须男女分开,也不能有空床位。”
又出了一个题目,刘先生还从没碰到过这样的客人,他只好又得花一番心思了。
瞑思苦想之后,他终于得出了方案:男的两间11人房间,四间7人房,一间5人房;女的一间11人房间,两间7人房,一间5人的,一共11间。
于江先生看了他的安排后,非常满意,马上办了住宿手续。
一桩大生意做成了,虽然复杂了一点,但刘先生的心里还是十分高兴的。
篇三
阿拉伯数字的由来
小明是个喜欢提问的孩子。一天,他对0—9这几个数字产生兴趣:为什么它们被称为“阿拉伯数字”呢?于是,他就去问妈妈:“0—9既然叫‘阿拉伯数字’,那肯定是阿拉伯人发明的了,对吗妈妈?”
妈妈摇摇头说:“阿拉伯数字实际上是印度人发明的。大约在1500年前,印度人就用一种特殊的字来表示数目,这些字有10个,只要一笔两笔就能写成。后来,这些数字传入阿拉伯,阿拉伯人觉得这些数字简单、实用,就在自己的国家广泛使用,并又传到了欧洲。就这样,慢慢变成了我们今天使用的数字。因为阿拉伯人在传播这些数字发挥了很大的作用,人们就习惯了称这种数字为‘阿拉伯数字’。”
小明听了说:“原来是这样。妈妈,这可不可以叫做‘将错就错’呢?”妈妈笑了。
关于“一年级小朋友数学故事阅读【三篇】”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!